

Features

- Ultra-wide input voltage range: 43-160VDC
- High efficiency up to 89%
- Low no-load power consumption
- Reinforced insulation, input output isolation test voltage:
 3k VAC, input case isolation test voltage:
 2.1k VAC
- Operating ambient temperature range: -40°C to +105°C
- Input under-voltage protection, output short-circuit, overcurrent, over-voltage, over-temperature protection
- EN50155 approved

Ideal Power's 36URF1D-QB-50WR3 50W Quarter Brick DC/DC Converters Series are certified to UKCA, CE, RoHS & EN 62368-1 Standards and comply with the relevant Efficiency Regulations. These are primarily used in ITE, Audio & Video, Railway Industries and customised solutions are available upon request.

Models						
Model No	Input Volt	tage (VDC) Max. ②	Ou Voltage (VDC)	tput Current (mA) Max./Min.	Full Load Efficiency (%) Typ.	Capacitive Load⑤ (µF) Max.
36URF1D03QB-50W(H)R3			3.3	11364/0	84/86	20000
36URF1D05QB-50W(H)R3			5	10000/0	85/87	10000
36URF1D12QB-50W(H)R3		.=0	12	4167/0	86/88	3000
36URF1D15QB-50W(H)R3	110	170	15	3333/0	86/88	2350
36URF1D24QB-50W(H)R3			24	2083/0	87/89	1500
36URF1D48QB-50W(H)R3			48	1041/0	85/87	240

Note:

- ① Use "H" suffix for heat sink mounting. We recommend choosing modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements.
- ② Exceeding the maximum input voltage may cause permanent damage.

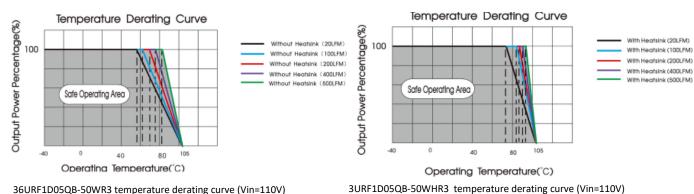
Input Specifications							
Parameter	Conditions		Min	Тур	Max	Unit	
		3.3VDC output		397/10	406/20		
Input Current (Full load / No-load)	Nominal input voltage	24VDC output		511/10	523/20		
	, p. 1	12VDC, 15VDC output		517/10	529/20	mA	
		05VDC, 48VDC output		523/10	535/20		
Reflected Ripple Current	Nominal input voltage			50			
Surge Voltage (1sec. max.)			-0.7		180		
Start-up Voltage					43	VDC	
Under-voltage Protection				40			
Input Filter				Pi fi	lter		
Hot Plug				Unavailable			
	Module on	Ctrl pin o	Ctrl pin open or pulled high (3.5-12VDC)				
Ctrl*	Module off		Ctrl pin	pulled low	to GND (0-:	1.2VDC)	
	Input current when off			2	10	mA	

Note:

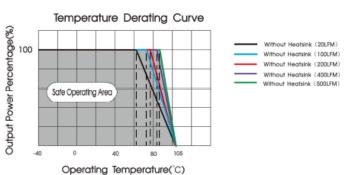
^{*} The Ctrl pin voltage is referenced to input -Vin.

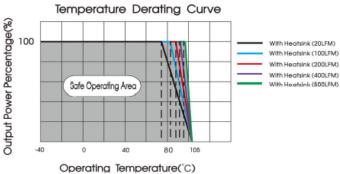
Output Specifications							
Item	Operating Conditions		Min.	Тур.	Max.	Unit	
Voltage Accuracy	Nominal input voltage, 0%-			±1	±3		
Linear Regulation	Input voltage variation from	3.3VDC, 5VDC output			±0.5		
	low to high at full load	Others		±0.1	±0.3	%	
Load Regulation	0%-100% load	3.3VDC, 5VDC output		±0.5	±1.0		
· ·		Others		±0.3	±0.5		
Transient Recovery Time				200	500	μs	
Transient Response Deviation	 25% load step change, nominal input voltage 	3.3VDC, 5VDC output		±6	±9	%	
		Others		±3	±5		
Temperature Coefficient	Full load				±0.03	%/°C	
Ripple & Noise	20MHz bandwidth, 5%-100%	48VDC output		200	300	mV p-p	
	load	Others		100	200		
Trim			90		110		
Output Voltage Remote Compensation(sense)					105	%	
Over-temperature Protection	Surface max. temperature			105	115	°C	
Over-voltage Protection	Input voltage range	3.3VDC, 5VDC output	110		160	%Vo	
	1	Others	110		140	,,,,	
Over-current Protection	Input voltage range		100	140	190	%lo	
Short-circuit Protection	Input voltage range	Input voltage range Continue			self-recov	ery	

Item	Operating Conditions		Min.	Тур.	Max.	Unit
Isolation	Electric Strength Test for 1 minute with a	Input-output	3000			V AC
	leakage current of 5mA max	Input-case	2100			V AC
	Electric Strength test for 1 minute with a leakage current of 1mA max.	Output-case	1500			V DC
Insulation Resistance	Input-output insulation at 500VDC		1000			МΩ
Isolation Capacitance	Input-output capacitance at 1KHz/0.1V			2200		pF
Switching Frequency	PWM mode			170		kHz
Operating Temperature	See temperature derating curves		-40		+105	°C
Storage Humidity	Non-condensing		5		95	%RH
Storage Temperature			-55		+125	
Pin Soldering Resistance	Soldering spot is 1.5mm away from case f	or 10 seconds			+300	°C
Cooling Test	EN			EN600	068-2-1	
Dry Heat EN60068-2-			68-2-2			
Damp Heat			EN60068-2-30			
Shock and Vibration Test			IEC/EN61373 - Category 1, Grade B			
MTBF	MIL-HDBK-217F@25°C		500			k hour

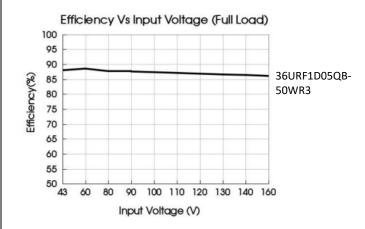

Mechanical Spe	cifications	
Case Material		Aluminum alloy case
Dimensions	Without heatsink	60.80 × 39.20 × 12.70mm
	With heatsink	61.50 × 39.20 × 27.80mm
Weight	Without heatsink	78.0g(Typ.)
- 0 -	With heatsink	109.0g(Typ.)
Cooling method		Free air convection or forced convection

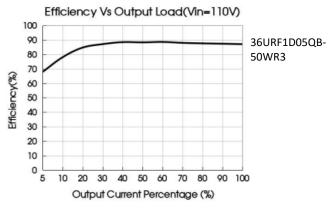
Electroma	agnetic	Compatibility (EMC)		
Emissions	CE	CISPR32/EN55032	150KHz-30MHz Class B (see Fig. 3 for recommended circuit)	
	RE*	CISPR32/EN55032	30MHz-1GHz Class B (see Fig. 3 for recommended circuit)	
	ESD	IEC/EN61000-4-2	GB/T17626.2 Contact ±6KV, Air ±8KV	perf.Criteria A
	RS	IEC/EN61000-4-3	GB/T17626.3 20V/m	perf.Criteria A
l	CS	IEC/EN61000-4-6	GB/T17626.6 10Vr.m.s	perf.Criteria A
Immunity	EFT	IEC/EN61000-4-4	GB/T17626.4 ±2KV (5KHz, 100KHz) (see Fig. 3 for recommended circuit)	perf.Criteria A
	Surge	IEC/EN61000-4-5	line to line ±2KV (1.2μs/50μs 2Ω) (see Fig. 3 for recommended circuit)	perf.Criteria A

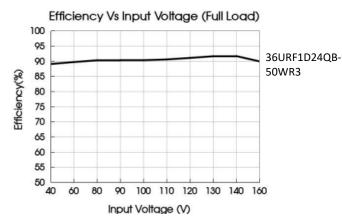

Electroma	agnetic (Compatibility (EN	MC - EN 50155)			
		EN50121-3-2	150kHz-500kHz 99dBuV (see Fig. 2 for recommended circuit)			
Factorions	CE EN55016-2-1 500kHz-30MHz 93dBuV (see Fig. 2 for recommended circuit)					
Emissions	EN50121-3-2 30MHz-230MHz 40dBuV/m at 10m (see Fig. 2 for recommended circuit)					
	RE	EN55016-2-1	230MHz-1GHz 47dBuV/m at 10m (see Fig. 2 for recommended circuit)			
	ESD	EN50121-3-2	Contact ±6KV/Air ±8KV	perf. Criteria A		
	RS	EN50121-3-2	20V/m	perf. Criteria A		
Immunity	EFT	EN50121-3-2	±2kV 5/50ns 5kHz (see Fig. 2 for recommended circuit)	perf. Criteria A		
iiiiiiuiiity	Surge	EN50121-3-2	line to line ±1KV (42Ω, 0.5μF) (see Fig. 2 for recommended circuit)	perf. Criteria A		
	CS	EN50121-3-2	0.15MHz-80MHz 10 Vr.m.s	perf. Criteria A		

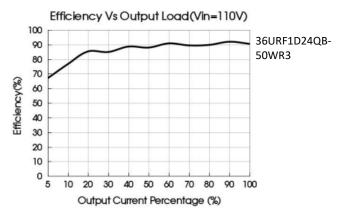

Characteristic Curve

36URF1D05QB-50WR3 temperature derating curve (Vin=110V)

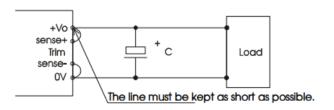

36URF1D12QB-50WR3 temperature derating curve (Vin=110V)



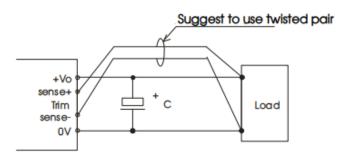

36URF1D12QB-50WHR3 temperature derating curve



Characteristic Curve (Continued)



Remote Sense Application


Typical application:

If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.

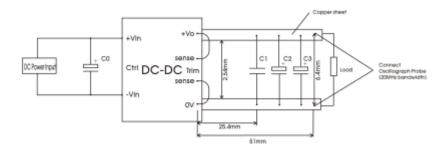
The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

Remote Sense Connection used for Compensation:

Notes:

Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.

PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wairs are suggested for remote compensation and must be kept as short as possible.


We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

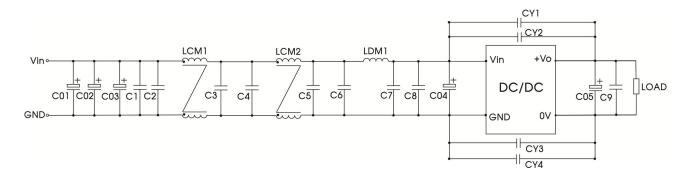
Ripple & Noise: Fig.1

Output Voltage \ Capacitors Value	C0(μF)	C1(µF)	C2(µF)	C3(µF)
3.3VDC				1000
5VDC				680
12VDC	100	1	10	
15VDC	100	1	10	220
24VDC				220
48VDC				

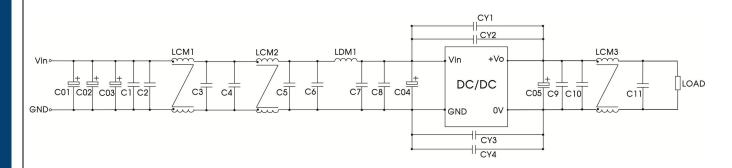
Typical Application:

Please ensure that at least a $100\mu F$ electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.



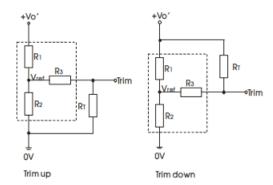
Output Voltage \ Capacitors Value	Cout(μF)	Cin(μF)	
3.3VDC	1000		
5VDC	680		
12VDC		100	
15VDC	220	100	
24VDC	220		
48VDC			


Design Reference (continued)

EMC compliance recommended circuit: Fig.2

C01, C02, C03, C04	220uF/200V (electrolytic capacitor)
C05	220uF/63V (electrolytic capacitor)
LDM1	1.5uH (Shielded inductor)
C1, C2, C3, C4, C5, C6, C7, C8, C9	2.2uF/250V
CY1, CY2, CY3, CY4	2200 pF /400VAC (Y safety capacitor)
LCM1	FL2D-30-472
LCM2	FL2D-30-102

EMC compliance recommended circuit: Fig.3


C01, C02, C03, C04	220uF/200V (electrolytic capacitor)		
C05	220uF/63V (electrolytic capacitor)		
LDM1	1.5uH (Shielded inductor)		
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11	2.2uF/250V		
CY1, CY2, CY3, CY4	2200 pF /400VAC (Y safety capacitor)		
LCM1	FL2D-30-472		
LCM2	FL2D-30-102		
	FL2D-70-360C (7A max.)		
LCM3	FL2D-A3-360C (13A max.)		
	FL2D-B5-360C (25A max.)		

Ideal Power Limited

Design Reference (continued)

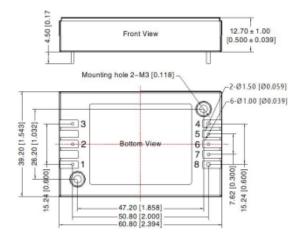
Trim Function for Output Voltage Adjustment (open if unused):

TRIM resistor connection (dashed line shows internal resistor network)

up:
$$R_T = \frac{\alpha R_2}{R_2 - \alpha} - R_3$$
 $\alpha = \frac{Vref}{Vo' - Vref} \cdot R_1$
down: $R_T = \frac{\alpha R_1}{R_1 - \alpha} - R_3$ $\alpha = \frac{Vo' - Vref}{Vref} \cdot R_2$

Resistance \ Vo	3.3(VDC)	5(VDC)	12(VDC)	15(VDC)	24(VDC)	48(VDC)
R1(KΩ)	4.83	8.80	11	14.49	24.87	58.7
R2(KΩ)	2.87	2.87	2.87	2.87	2.87	3.21
R3(KΩ)	9.66	11	11	16	21	11
Vref(V)	1.24	1.24	2.5	2.5	2.5	2.5

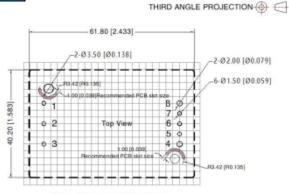
Note:


For R1, R2, R3 and Vref values refer to table 1. RT = Trim Resistor value; a = self-defined parameter Vo'= desired output voltage

The products do not support parallel connection of their output

Dimensions and Recommended Layout

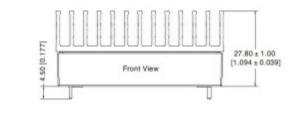
Without Heat Sink:

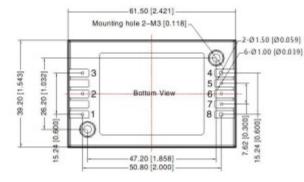


Note:

Unit:mm[inch]

Pin1,2,3,5,6,7 s diameter: 1.00[0.039] Pin4,8's diameter: 1.50[0.059] Pin diameter tolerances: ±0.10[±0.004] General tolerances: ±0.50[±0.020]

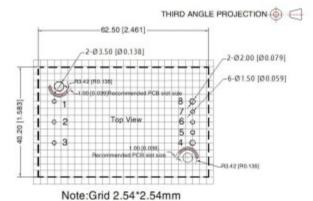

Mounting hole screwing torque: Max 0.4 N-m

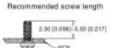


Note:Grid 2.54*2.54mm

Pin-Out				
Pin	Function	Pin	Function	
1	+Vin	5	Sense-	
2	Ctrl	6	Trim	
3	-Vin	7	Sense+	
4	0V	8	+Vo	

With Heat Sink:




Note:

Unit:mm[inch]

Pin1,2,3,5,6,7's diameter: 1.00[0.039] Pin4,8's diameter: 1.50[0.059] Pin diameter tolerances: ±0.10[±0.004] General tolerances: ±0.50[±0.020]

Mounting hole screwing torque : Max 0.4 N·m

Pin-Out				
Pin	Function	Pin	Function	
1	+Vin	5	Sense-	
2	Ctrl	6	Trim	
3	-Vin	7	Sense+	
4	OV	8	+Vo	

Notes:

For additional information on Product Packaging please refer to www.ldealpower.co.uk.

Recommend using module with more than 5% load, if not, the ripple of the product may exceed the specification, but does not affect the reliability of the product.

The maximum capacitive load offered were tested at input voltage range and full load.

Unless otherwise specified, parameters in this datasheet were Measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load.

All index testing methods in this datasheet are based on company corporate standards.

We can provide product customization service, please contact our technicians directly for specific information.

Products are related to laws and regulations: see "Features" and "EMC".

OUR products shall be classified according to ISO14001 and related environmental laws and regulations and shall be handled by qualified units.